

Thermal Epithermal eXperiments (TEX) Final Design for Plutonium-Aluminum Zero Power Physics Reactor (ZPPR) with Polyethylene and Tantalum

Presented at the Nuclear Criticality Safety Program (NCSP) Technical Program Review March 18-19, 2015 at Lawrence Livermore National Laboratory

Catherine Percher
Lawrence Livermore National Laboratory

IER 184: Thermal/Epithermal eXperiments (TEX)

- TEX Feasibility Meeting
 - July 2011 at Sandia National Laboratories, Albuquerque, NM
 - Representatives from US, UK, and France
- Intermediate spectrum experiments needed
 - Limited Data (2.1% of ICSBEP Benchmarks)
 - Consensus prioritization of nuclear data needs (in order):
 - ²³⁹Pu, ²⁴⁰Pu, ²³⁸U, ²³⁵U, Temperature variations, Water density variations, Steel, Lead (reflection), Hafnium, Tantalum, Tungsten, Nickel, Molybdenum, Chromium, Manganese, Copper, Vanadium, Titanium, and Concrete (reflection, characterization, and water content)
- CED-1 (FY12) showed feasibility for three different fissile systems to create intermediate energy assemblies with various diluent materials
 - Downselect to ZPPR Pu assemblies moderated by polyethylene with tantalum diluents for CED-2

Improved PANN As-Built Model

Plutonium Baseline Experiments

- Five experiments, covering thermal, intermediate and fast fission energy regimes
- PANN plates arranged in approximately 12" x 12" layers (6 plates by 4 plates)

Trays Used to Facilitate Stacking Layers

Plutonium Baseline Experiments

Five Baseline Experiments

- Vary polyethylene thickness between the plutonium layers ("x" dimension in previous slide)
 - Experiment 1: 0" PE
 - Experiment 2: 1/16" PE
 - Experiment 3: 3/16" PE
 - Experiment 4: 7/16" PE
 - Experiment 5: 1" PE

Baseline Experiment Characteristics

Thickness of PE Plates (in)	Critical Mass (kg ²³⁹ Pu)	Number of Pu Layers	Number of ZPPR Plates	Stack Height (cm)	Thermal Fission Fraction (<0.625 eV)	Intermediate Fission Fraction (0.625 eV- 100 KeV)	Fast Fission Fraction (>100 KeV)
0 (no PE)	49.8	21	504	12.5	0.09	0.17	0.74
1/16	40.3	17	408	13.5	0.14	0.38	0.49
3/16	28.5	12	288	12.0	0.27	0.43	0.30
7/16	19.0	8	192	15.9	0.48	0.33	0.19
1	14.2	6	144	20.5	0.67	0.21	0.12

Tantalum Diluted Cases

- As part of the ZPPR inventory, ANL had approximately 15,000 very pure tantalum plates
- Nominal outer dimensions of 2" x 3" by 1/16"
- Additional trays will be manufactured to accommodate both Pu/Al and Ta plates
 - 3/16" tray depth

Tantalum Diluent Experiments

Tantalum Experiment Characteristics

Thickness of PE Plates (in)	Critical Mass (kg ²³⁹ Pu)	Number of Pu Layers	Number of ZPPR Plates	Stack Height (cm)	Thermal Fission Fraction (<0.625 eV)	Intermediate Fission Fraction (0.625 eV- 100 KeV)	Fast Fission Fraction (>100 KeV)
0 (no PE)	61.7	26	624	13.0	0.07	0.14	0.79
1/16	71.2	30	720	19.6	0.8	0.36	0.56
3/16	68.8	29	696	29.3	0.19	0.45	0.36
7/16	42.7	18	432	33.1	0.43	0.36	0.21
1	28.5	12	288	36.3	0.64	0.22	0.14

Uncertainty and Bias Calculations

- Uncertainties were estimated to be on the order of 0.0026
 - Mass and geometry uncertainties from the ZPPR plates were very low due to the strict procurement specifications from ANL
 - Larger uncertainties due to educated guesses about PE part tolerance
 - Can be mitigated by procurement specs and measurements
 - Experiment shown to be sensitive to stack gaps
 - Mitigate by measurements during experiment
- Biases were estimated at 0.00057
 - Fuel impurities are overestimated, based on worst case impurity (carbon) and maximum impurity level per plate
 - Room return bias was found to be 0.00017 with 1" PE reflection
 - With 15 degree temperature difference, bias introduced was 0.00016

Heat Load Calculations

Tens of kg quantities of Plutonium plates required for TEX configurations produce lots of heat

Isotope	Mass per ZPPR Plate (g)	Specific Power (mW/g) ¹⁴	Heat Source (mW)
²³⁹ Pu	98.87	1.9288	190.700456
²⁴⁰ Pu	4.697	7.0824	33.2660328
²⁴¹ Pu	0.0032	3.412	0.0109184
²⁴² Pu	0.0049	0.1159	0.00056791
²⁴¹ Am	0.4021	114.2	45.91982
Total	103.9772		269.8977951

 Heat load calculations were completed to ensure temperatures would not impact the polyethylene moderators (maximum long-term service life temperature of 80 °C)

Heat Load Calculations

- ANSYS 14.5.0 Finite Element Analysis Software used to model TEX configurations with PE moderation
 - With 0.01" aluminum heat dispersal plates ("fins")
 - Without 0.01"
 aluminum heat
 dispersal plates

Heat Load Results

Experiment Modeled	HDPE Thickness (in)	Pu Layers	T _{max} Without Fins (°C)	T _{max} With Fins (°C)
1	0	21	32	2.6
2	1/16	17	52.6	36.3
3	3/16	12	44.9	34.6
4	7/16	8	39.1	32.7
5	1	6	36.6	31.8

- T_{max} without fins 52.6°C
- Maximum long-term service temperature of HDPE is approximately 80 °C
- Fins likely not required to keep temperature below polyethylene impact temperature
- However, fins help normalize temperature over entire stack and over the five different experiments

Current Work (FY2015) for TEX

- CED-3a initiated as of March 1, 2015
- Procurements in progress
- First experiments to be scheduled later this year